Studying the E↵ects of Elongational Properties on Atomization of Weakly Viscoelastic Solutions Using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)
نویسنده
چکیده
The extensional rheological properties of dilute polymer solutions play a dominant role in many commercial processes such as air-assisted atomization. This is a high deformation rate process important in application of diverse materials such as paints, fertilizer sprays and delivery of airborne drugs. Dilute polymeric solutions which have identical values of high shear-rate viscosity (HSV) often exhibit different values of Sauter Mean Diameter (SMD) in their spray size distributions as a result of differing extensional rheological properties. We explore the atomization of a series of model Poly(ethylene oxide) (PEO) solutions dissolved in water/glycerol mixtures. Each solution is sprayed with an air-assisted spray gun under similar conditions and imaged with a commercial spray measurement system. The values of HSV for PEO solutions are close to the solvent viscosity and matched to those of typical ink or paint samples. The surface tensions of the fluids are also tuned to be very similar, however both the SMD and the droplet size distribution change considerably. For the highest molecular weight PEO systems, interconnected beads-on-string structures are observed at different positions of the spray fan. Capillary Break-up Extensional Rheometry (CaBER) can be used to measure the extensional properties of the more viscous solutions, but the well-known limitations of this approach include inertially-induced asymmetries, gravitational sagging and the very short filament lifetimes of low viscosity samples all of which constrain the range of relaxation times that can be probed. Consequently we also explore the use of Rayleigh Ohnesorge Jet Elongational Rheometry (ROJER) to probe the extensional response of these viscoelastic solutions at realistic timescales and deformation rates. A cylindrical liquid jet is excited by a piezo-actuator at a known frequency as it exits a micromachined nozzle, and stroboscopic imaging provides high temporal and spatial resolution in the break-up process. Analyzing the evolution in the jet diameter before break-up enables meaningful measurement of relaxation times down to values as small as 60 microsecond, and these values can be directly correlated with the differences in the final spray size distributions and the mean diameters. We outline a simple model for the fluid dynamics of the thinning filaments close to breakup that accurately describes the variation of the average droplet diameter as a function of the elongational relaxation time measured for each fluid. Abstract The extensional rheological properties of dilute polymer solutions play a dominant role in many commercial processes such as air-assisted atomization. This is a high deformation …
منابع مشابه
The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
Cellulose derivatives containing associating hydrophobic groups along their hydrophilic backbone are used as rheology modifiers in the formulation of water-based spray paints, medicinal sprays, cosmetics and printable inks. Jetting and spraying applications of these materials involve progressive thinning and break-up of a fluid column or sheet into drops. Strong extensional kinematics develop i...
متن کاملExtensional Relaxation Times of Dilute, Aqueous Polymer Solutions
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional vi...
متن کاملDynamics of Bead Formation, Filament Thinning, and Breakup in Weakly Viscoelastic Jets
The spatiotemporal evolution of a viscoelastic jet depends on the relative magnitude of capillary, viscous, inertial and elastic stresses. The interplay of capillary and elastic stresses leads to formation of very thin and stable filaments between drops, or to ‘beadson-a-string’ structure. We show that by understanding the physical processes that control different stages of the jet evolution it...
متن کامل‘Beads on a String’ Structures and Extensional Rheometry using Jet Break-up
1. Introduction: Surface tension driven break-up of cylindrical fluid elements into droplets plays a crucial role in the use or processing of many multicomponent complex fluids like paints, inks, insecticides, cosmetics, food, etc [1, 2]. These industrial fluids are typically formulated using dilute polymer solutions, and are exposed to a wide range of shear and extension rates. Since the polym...
متن کاملPRO O F CO PY 001704 JO R Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions
A filament stretching extensional rheometer and capillary breakup extensional rheometer are used to measure the extensional rheology of a series of wormlike micelle solutions experiencing a uniaxial elongational flow. The experiments are performed using a series of wormlike micelle solutions of both cetylpyridinium chloride and sodium salicylate NaSal in an aqueous sodium chloride solution and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014